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Deriving true priority vectors from intuitive pairwise comparison matrices (PCMs) and consistency 

measurement of decision makers judgments about their genuine weights are crucial issues within the 

multicriteria decision making support methodology called Analytic Hierarchy Process (AHP). The most popular 

procedure in the ranking process, constitutes the Right Eigenvector Method (REV). The inventor of the AHP 

convinces that as long as inconsistent PCMs are allowed in the AHP none of the other existing procedures 

qualify and the REV provides the only right solution in this process. The objective of this scientific paper is to 

examine if the former opinion can be considered as experimentally confirmed. For this purpose it was decided 

to apply Monte Carlo methodology. However, rather than simulate and analyze simulations results for a single 

PCM, as it has been done so far by many other authors, we decided to design and analyze computer simulations 

results for a singular model of the AHP framework. Our findings lead to inevitable conclusion that the REV 

cannot longer be perceived as a dominant procedure within the AHP methodology, especially when 

nonreciprocal PCMs are considered. It was verified empirically in our research that in the situation when 

nonreciprocal PCMs are considered the REV impoverishes the entire AHP methodology by its lack of PCMs 

inconsistency measure in such cases. Moreover, it provides less accurate rankings for a particular decision in 

comparison to other presented methods. It was also unequivocally verified that the enforced reciprocity of PCM 

leads directly to worse estimates of priorities weights. Altogether, it seems very important from the perspective 

of methodology supporting multicriteria decision making, the crucial process embedded in most of management 

activity. In the consequence, because the REV recedes other prioritization procedures available for the AHP 

methodology, it is advised to consider them instead, especially under some circumstances of an important and 

very tight managerial decisions. 
 

Keywords: Analytic hierarchy process, right eigenvector, prioritization, ranking, constrained optimization, 

consistency measurement 

 

 

Introduction 
 

Probably all of us at certain point of our life were 

involved in a decision where the numbers told us to 

do one thing but our intuition told us something 

else. As an individual we have that luxury to 

dismiss the numbers and trust our intuition. 

Obviously, a corporate decision-making group or a 

government agency should not and cannot proceed 

in this way. Besides, there are plenty examples that 

intuition-based decision making can lead to 

fallacious conclusions. This phenomena is probably 

the fundamental reason why scientists continuously 

deal with explanation and modeling of decisional 

problems in the way that common human being can 

comprehend them. This research paper focuses on a 

decision making support methodology called 

Analytic Hierarchy Process (AHP).  

Judging by the number of articles devoted to 

the AHP it seems that it is the most widely used 

decision making approach in the world today, as 

well most validated methodology – thousands of  

actual applications in which the AHP results were  
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accepted and used by the competent decision 

markets, see e.g. Kazibudzki (2012) and references 

in there, as well (Grzybowski, 2012; Ishizaka & 

Labib, 2011; Ho, 2008; Vaidya & Kumar, 2006). 

However, despite of its popularity it has been also 

criticized mainly for the mathematical analysis 

which it applies, i.e. the right eigenvector method 

(REV), what constitutes the main point of reference 

for this paper. It is so because the REV is supposed 

to operate only with reciprocal pairwise comparisons 

matrices (reciprocal PCMs), otherwise it is not 

possible to measure consistency of decision makers 

judgments (Saaty’s consistency index is inexplicable 

for nonreciprocal PCMs). That entails a limited 

range of applications and increase estimation errors. 

As a result, in practice reciprocity of PCMs is a very 

popular requirement, although many authors argue 

that it is an artificial condition which impoverish the 

PCMs about information concerning the unknown 

priority vector that otherwise could be revealed 

(Grzybowski, 2012; Basak, 1998; Budescu, Zwick 

& Rapoport, 1986; Hovanov, Kolari & Sokolov, 

2008; Lipovetsky & Tishler, 1997; Zahedi, 1986). 

Thus, taking above into consideration, we argue that 
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it is justifiable to search for other methods that could 

operate within the Analytic Hierarchy Process in 

order to face the critique, and in the consequence 

eliminate some flaws of the methodology and the 

concept itself, which in our opinion is very 

applicable. That is why we decided to reintroduce 

the concept of Logarithmic Utility Approach to the 

REV (Kazibudzki, 2012) and compare its 

performance with the REV and three other, rated 

best procedures (Choo & Wedley, 2004; Lin, 2007; 

Grzybowski, 2012) available for the AHP. For this 

purpose Monte Carlo methodology was applied and 

validation studies were designed accordingly. 

Although, we refined simulation frameworks already 

proposed in the literature, e.g. (Basak, 1998; Choo & 

Wedley, 2004; Lin, 2007; Grzybowski, 2012; 

Zahedi, 1986), our simulation scenario and research 

focus have never been taken into consideration yet. 

For instance in the simulation framework described 

in (Choo & Wedley, 2004) it was proposed to study 

two types of PCMs: the PCMs that contain many 

small errors and the PCMs that contain one large 

error. In the revised framework described in (Lin, 

2007) author proposed to consider additionally 

PCMs with many large errors as well as with many 

small and one large error. However, the simulations 

described in (Choo & Wedley, 2004; Lin, 2007) 

were based only on one known priority vector which 

was not normalized and thus the observed average 

errors are not comparable with errors corresponding 

to other vectors having different dimensions and 

priority values.  

Furthermore, we also took into account 

rounding errors as in Grzybowski (2012) because 

randomly disturbed ratios were rounded to the 

closest values from a particular scale in order to 

make the simulation scenario truly realistic. Thus, it 

seems to reflect real AHP procedure that assumes 

that decision makers must express their opinions on 

a given scale. Certainly, this prerequisite leads 

directly and inevitably to additional source of errors 

that should be taken into account, see e.g. (Dong, 

Xu, Li & Dai, 2008). Moreover, in order to make the 

results of our research more representative we 

examined a performance of the entire AHP 

framework (not single PCM) with different number 

of criteria and different number of alternatives.  

Thus, we compared results of random 

normalized priority vectors within the most simple 

AHP framework, comprising three levels: goal, 

criteria and alternatives. In this way we adapted the 

scenario procedure described in Kazibudzki (2012 & 

2013) but as opposite to the research described in 

there we focused our attention on the existing 

information gap that was not covered yet, i.e. 

nonreciprocal PCMs performance within singular 

AHP frameworks and related consistency 

measurement in these cases. 

 

Notations and Principles of the Analytic Hierarchy 

Process 

The AHP is grounded on the well-defined 

mathematical structure of consistent matrices and 

their associated right-eigenvector’s ability to 

generate true or approximate weights (Kazibudzki, 

2012; Grzybowski, 2012; Merkin, 1979; Saaty, 

1990). Fundamentally a problem of deriving 

priority weights from so called pairwise 

comparison matrix (PCM) denoted as A(a)=[aij]nxn 

with elements aij=ai/aj is to estimate a priority 

vector (PV) w=[w1, w2, w3,…, wn]
T
 on the bases of 

the matrix A(a) which comprises a decision maker 

(DM) pairwise comparisons judgments concerning 

the importance of a given binary set of alternatives. 

Commonly the priority weights wi , i=1,…,n, are 

chosen to be positive and normalized to unity: 

 
n

i
iw 1

, and the elements aij of the matrix A(a) 

are then the DM judgments about the priority ratios 

wi /wj , i,j=1,…,n, where n is the number of all 

alternatives being considered. In a perfect judgment 

case then, we have:  

A w = n w                                          [1] 

and in this situation the PV w can be computed by 

solving the eigenvector equation. It is so because 

the number n in the perfect case (matrix A(a) is 

consistent) is the principal eigenvalue of A(a), i.e. 

the largest eigenvalue obtained from the solution of 

the characteristic equation:  

det(A–lambda I)                                         [2] 

where I denotes identity matrix of order n. In this 

case it is also the only nonzero eigenvalue. On the 

other hand, when the case is not perfect (matrix 

A(a) is inconsistent) an estimate of the true PV is 

normalized right eigenvector (REV) associated 

with the largest eigenvalue. Thus, in order to obtain 

the estimate we need to solve the general 

eigenvector equation:  

A w = lambdamax w                                 [3] 

where lambdamax denotes the principal eigenvalue 

which is then always bigger than n, is simple and 

its existence is guaranteed by Perron–Frobenius 

theorem, while other lambdas are close to zero. If 

the elements of a matrix A(a) satisfy the condition 

aij=1/aji for all i,j=1,…,n then the matrix A(a) is 

said to be reciprocal (RPCM). If its elements 

satisfy the condition aikakj=aij for all i,j,k=1,…,n 

and the matrix is reciprocal, then it is called 

consistent. Finally, the matrix A(a) is said to be 

transitive (TPCM) if the following conditions hold: 

(i) if for any l=1,…,n, an element alj is not less than 

an element alk then 
ikij aa   for i=1,…,n, and (ii) if 

for any l=1,…,n, an element ajl is not less than an 

element akl then 
kiji aa   for i=1,…,n. Certainly, in 

the case of the reciprocal PCM the two conditions (i) 

and (ii) are equivalent. It is important to notice that 

the methodology of capturing the degree of PCM 

inconsistency in order to derive a vector of 

priorities is a central point of the AHP and a crucial 

issue for the whole priority theory. Obviously, 

significant violations of the consistency may 
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mislead about the value of information obtained 

making the methodology simply useless. As far it is 

concerned, the most popular measure of PCM 

inconsistency belongs to Saaty (1980) and is 

strictly related to the REV, what makes it 

especially attractive. The point here is that there is 

quite few propositions in the literature for 

consistency measures, see e.g. Grzybowski (2012) 

or references in Kazibudzki (2012). However, it is 

argued that so long as inconsistency is tolerated, 

the REV is the basic theoretical concept for 

deriving a scale and no other methods qualify, what 

entails the concern about the usefulness of 

inconsistency measures derived from them. 

Although, during the last three decades plenty of 

other methods have been proposed, see for instance 

Grzybowski (2012) or/and Kazibudzki (2012) and 

references in there. 
 

Novel Prioritization Method and Related 

Consistency Index 

 

There is a well known principle in mathematics 

saying that a necessary condition for a credible 

problem solving procedure is “that if it produces 

desired results, and we perturb the variables of the 

problem in some small sense, it gives us results that 

are ‘close’ to the original ones” (Saaty, 1990, p. 18). 

It should be noticed that the procedure described in 

this paper possesses this property. We start from the 

following theorems (Saaty, 1986, 2006): 

Theorem 1: A positive n by n matrix has the ratio 

form A(w)=(wi/wj), i,j=1,…,n, if, and only if, it is 

consistent.  

Theorem 2: The matrix of ratios A(w)=(wi/wj) is 

consistent if and only if n is its principal eigenvalue 

and  A w = n w. Further, w with positive entries is 

unique to within a multiplicative constant. 

Obviously, in the real business situations, when 

the task is to derive w from pairwise comparisons of 

elements wi and wj on the bases of managerial 

intuitive judgments, we cannot even expect to have a 

consistent outcome. Instead of having A(w), we have 

only its estimate A(a) containing managerial 

intuitive judgments, more or less close to A(w) in 

accordance to their judgmental skills and experience. 

So, when the consistency property does not hold, the 

relation between the elements of A(a) and A(w) can 

be expressed in the following form: 
 

aij=eij wi /wj                   [4] 
 

where eij is a perturbation factor which is expected 

to be near 1, e.g. (Kazibudzki, 2012; Grzybowski, 

2012; Saaty, 2003; Sun & Greenberg, 2006; 

Ishizaka & Labib, 2011). In a statistical approach 

and many simulation studies the perturbation factor 

is interpreted as a realization of a random variable, 

e.g. (Grzybowski, 2012; Kazibudzki, 2013; Zahedi, 

1986). This fact however does not hinder to describe 

the procedure for deriving w from A(a) in the case of 

perfect consistency (eij=1) which relies on the 

second theorem and fundamental mathematical 

constrained optimization guidelines (Grzybowski, 

2012; Kazibudzki, 2012): 

min LUA=
 
 
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
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subject to: 

njiww i

n

j
j ,,1,,0,1

1




 

 

Because the utility of the method decreases 

logarithmically, inversely proportionally to the 

inconsistency growth, it seems natural to identify it 

as the Logarithmic Utility Approach (LUA) to the 

Eigenvector Method (REV). Basically, the concept 

of the method is to search for the vector w that the 

multiplication result  A w  n w (Grzybowski, 

2012). Thus, in the consistent case the solution of the 

procedure is exactly the same as that given by the 

REV (theorem 2), whereas in the inconsistent case 

(eij1) the solution results with the PV which best 

fits (from the perspective of criterion [5]) to that one 

which delivers consistent PCM. 

Recalling the fact, that the methodology of 

capturing the degree of PCM inconsistency is a 

central point of the AHP and a crucial issue for the 

whole prioritization theory, we must underline that 

LUA provides such a inconsistency measure 

(actually the LUA itself constitutes the measure) 

what enables decision makers acceptance or 

rejection of the PV estimate. If we denote the 

minimum value of the LUA in the relation [5] as 

MLUA, then we can express our consistency index 

in the following form: 

MLUA
n

nCI
1

)(                                 [6] 

 

The index can be interpreted as the average 

deviation from ideal judgment about priorities in the 

case of perfect consistency i.e. CI(n)=0. In the case 

of unsatisfactory consistency level, the attempt to 

improve consistency is suggested together with a 

new w derivation. After each iteration, we assume 

that the new matrix A(a) is a perturbation of A(w) 

and its derived PV is a perturbation of w. In the 

literature we find five conditions for good 

approximations (Saaty, 2006): reciprocity, 

homogeneity (the elements being compared must be 

of the same order of magnitude), independency 

(judgments about, or the priorities of, the elements in 

a hierarchy cannot depend on lower level elements), 

near consistency and uniform continuity (elements 

wi, i=1,…,n should be relatively insensitive to small 

changes in the elements aij, only then good 

approximations to the aij remain wi/wj ratios). Beside 

the reciprocity condition we find them applicable 

also for the LUA. 

 

Validation Studies on the Bases of Novel 

Methodical Framework  

 
Description of the simulation scenario 
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The intent of this section is to evaluate the 

performance of the LUA on the background of 

performance of other chosen methods available for 

the AHP. In order to achieve this objective we are 

going to proceed with simulations but not such 

commonly known from literature, i.e. concerned 

with only one single PCM. Our simulation scenario 

will involve the entire AHP framework which is 

supposed to reflect the hypothetical decisional 

problem (Kazibudzki, 2012 & 2013). For this 

purpose the following methods will be considered:  

– (GM) i.e. geometric mean procedure (Crawford 

& Williams, 1985) given by the formula: 
n

n

i

n

j
ij

n
n

j
iji aaw

/1

1 1

/1

1

 
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
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
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










  [7] 

– (REV) i.e. principal right eigenvector method 

(Saaty, 1980), already described in this paper, 

– (LUA) i.e. logarithmic utility approach, earlier 

introduced and described in this paper, 

– (SRDM) i.e. sum of squared relative differences 

(Grzybowski, 2012), given by the formula: 

min SRDM (w)=
 
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
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– SNCS i.e. simple normalized column sum 

procedure (Choo & Wedley, 2004), given by the 

formula: 

 
 











n

j

n

k
kjiji aa

n
w

1 1

1              [9] 

The performance evaluation study of above chosen 

methods available for the AHP, rated as dominant 

among others (Choo & Wedley, 2004; Lin, 2007; 

Grzybowski, 2012) is going to be based on the 

following seminal assumptions (Kazibudzki, 2012). 

We assume, the hierarchy consist of three levels: 

goal, criteria and alternatives, which is supposed to 

reflect the hypothetic case of real decisional 

problem. Then, in order to compare the accuracy of 

the estimations obtained by chosen methods we 

simulate different situations related to various 

sources of the PCM inconsistency (Grzybowski, 

2012). Fundamentally, the inconsistency commonly 

results from errors caused by the nature of human 

judgments and errors due to the technical realization 

of the comparison procedure i.e. rounding errors and 

errors resulting from the forced reciprocity 

requirement. Nature of human judgments can be 

represented as the realization of some random 

process in accordance with the formula [4]. 

Probability distributions of the perturbation factor eij 

mainly involve uniform and gamma, as well 

truncated normal or log-normal (Kazibudzki, 2013; 

Basak, 1998; Choo & Wedley, 2004; Lin, 2007; 

Zahedi, 1986). The rounding errors, on the other 

hand, are related to the numerical ratio scale whose 

values should be used by prospective decision 

makers in order to express somehow their 

judgments (Grzybowski, 2012; Dong, Xu, Li & 

Dai, 2008; Lipovetsky & Tishler, 1997; Lipovetsky 

& Conklin, 2002). In conventional AHP applications 

the most popular is Saaty’s numerical scale which 

comprises the integers from 1 to 9 and their 

reciprocals but there exist also others i.e. geometric 

scale and numerical scale. The first one usually 

consists of the numbers computed in accordance 

with the formula  n2 where n comprises the 

integers from minus 8 to 8. The latter involves 

arbitrary integers from 1 to n and their reciprocals. 

Basically, in order to run the validation studies 

of the above presented methods we refined 

simulation frameworks already proposed in the 

literature, e.g. (Basak, 1998; Choo & Wedley, 2004; 

Lin, 2007; Grzybowski, 2012; Zahedi, 1986). For 

instance in the simulation framework described in 

(Choo & Wedley, 2004) it was proposed to study 

two types of PCMs: the PCMs that contain many 

small errors and the PCMs that contain one large 

error. In the revised framework described in (Lin, 

2007) author proposed to consider additionally 

PCMs with many large errors as well as with many 

small and one large error. In our simulations we 

adapted these frameworks in order to make them 

more representative and realistic. Firstly, the 

simulations described in (Choo & Wedley, 2004; 

Lin, 2007) were based only on one known priority 

vector. Moreover, the vector was not normalized and 

thus the observed average errors cannot be compared 

with errors corresponding to other vectors having 

different dimensions and priority values. Secondly, 

we also took into account the rounding errors. 

Therefore the randomly disturbed ratios were 

rounded to the closest values from particular scale 

(Grzybowski, 2012; Dong, Xu, Li & Dai, 2008). 

However, the simulations described in Grzybowski 

(2012) were designed exclusively for performance 

measurement of procedures operating within 

different but single priority vectors. In order to make 

the results more representative in our simulation 

program we used the entire AHP framework with 

different number of criteria and different number of 

alternatives comprising many random normalized 

priority vectors– in the most simple AHP framework 

considered, with three levels: goal, criteria and 

alternatives (Kazibudzki, 2012 & 2013). Thus, our 

simulation scenario realizes the steps proposed in 

Kazibudzki (2012), but the difference is we focus 

more on nonreciprocal cases and related 

inconsistency measurement in such situations. 

Certainly, some performance statistics are calculated 

as the scenario is iterated prescribed number of times 

in order to obtain such mean values of performance 

measures like: the Pearson correlation coefficient 

(PCC), Spearman rank correlation coefficient 

(SRCC) (Grzybowski, 2012; Moy, Lam & Choo, 

1997; Budescu, Zwick & Rapoport, 1986), and mean 

absolute deviation (Kazibudzki, 2012; Choo & 

Wedley, 2004; Lin, 2007; Dong, Xu, Li & Dai, 

2008). There are considered two approximation 
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options within the simulation scenario: with and 

without forced reciprocity. When forced reciprocity 

condition is executed, the perturbed PCM inputs are 

taken only from above its diagonal elements, and the 

remaining ones are entered as the inverses of the 

corresponding symmetric units in relation to its 

diagonal elements (Kazibudzki, 2012; Grzybowski, 

2012). Matrices with forced reciprocity condition 

applied we denote as FRPCMs, whereas the other 

ones as APCMs (arbitrary pairwise comparisons 

matrices). 

 

Exemplification of the simulation framework 

 

In order to clarify the methodology lying behind 

the scenario introduced in former subchapter of this 

section we are going to present the simplified 

example now. For the illustration purpose we take 

into consideration only technical perturbation of 

PCMs resulting from rounding errors (Saaty’s 

scale) and forced reciprocity. Let us consider the 

following ideal model of the AHP framework with 

three levels (four criteria and four alternatives): 

 
With respect to the GOAL: 





































30.0

10.0

25.0

35.0

132.1857143.0

333333.014.0285714.0

833333.05.21714286.0

16667.15.34.11

4

3

2

1

4321 cIPPV

c

c

c

c

cccc

 

 

with respect to criteria c1–c2: 





































25.0

15.0

25.0

35.0

166667.11714286.0

6.016.0428571.0

166667.11714286.0

4.133333.24.11

4

3

2

1

4321 aIPPV

a

a

a

a

aaaa
 

 
with respect to criteria c3–c4: 





































40.0
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15.0

10.0

114286.166667.24

875.0133333.25.3

375.0428571.015.1

25.0285714.0666667.01

4

3

2

1

4321 aIPPV

a

a

a

a

aaaa
 

 

 

After synthesis, the following result is obtained 

ITPV=[0.25, 0.21, 0.23, 0.31]
T
. In accordance with 

the simulation scenario we can now perturb every 

PCM in the presented framework. For the purpose 

of scenario illustration only, we apply two kinds of 

perturbation error consecutively. We round each 

element of the particular PCM to Saaty’s numerical 

scale and force its reciprocity. Then, on the bases 

of such PCMs we compute their respective priority 

vectors (PPV), in our example with the application 

of the REV, and finally calculate the TPV for the 

illustrative model of the AHP framework. Thus, 

after all these transformations our model could be 

presented as follows: 

 
with respect to the GOAL: 







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with respect to criteria c1–c2: 
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with respect to criteria c3–c4: 


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After synthesis, the following result is obtained 

TPVREV= [0.2034, 0.2336, 0.2316, 0.3315]
T
 and we 

are ready to compute earlier mentioned 

performance measures between ITPV and TPV, i.e. 

SRCC, PCC and MAD. For this particular example 

we have SRCC=0.2, PCC=0.8142, MAD= 

0.023325. As we can see only with the application 

of rounding errors and forced reciprocity of PCMs 

we have the situation which let us experience the 

rank reversal phenomena for the entire AHP 

framework as from the perspective of ITPV we 

have ranks {2, 4, 3, 1} and the resulting TPVREV 

provides ranks {4, 2, 3, 1}. Basing only on this 

very simple illustrative scenario we can realize that 

it is quite reasonable to search for other methods 

that can successfully operate within the Analytic 

Hierarchy Process. Certainly, it is very reasonable 

to make the effort and at least strive to reduce the 

technical errors within the AHP. Obviously, we 

cannot avoid the application of the particular scale 

which entails rounding errors because we have to 

enable decision makers to express somehow their 

judgments but certainly we can reduce technical 

errors caused by the PCM forced reciprocity 

requirement. Then however, we need to look for 

other prioritization procedures which not only can 

operate with nonreciprocal PCMs but above all 

they are able to provide in these circumstances 

meaningful consistency indices of decision makers 

judgments.  

Preliminary simulation results 

 

Taking into account the research of Saaty and Hu 

(1998) illustrating the case where variability in ranks 

does not occur for each individual judgment matrix, 

but still occurs in the overall ranking of the final 

alternatives due to the multicriteria process itself we 

decided as in Kazibudzki (2012) to examine the 

results of adequately designed simulations in order to 

analyze the same three levels AHP framework as in 

the cited example, i.e. goal, criteria and alternatives. 

Thus, we simulated 1000 such AHP frameworks in 

order to evaluate the performance of arbitrarily chosen 

methods under the scenario assuming application of 

rounding errors only, and 50 such AHP frameworks 

making them inconsistent 100 times in each case. In 

the latter scenario the inconsistency was executed 

exclusively due to perturbation factor (eij) drawn 

uniformly from the interval eij  [0.01, 1.99]. In both 

scenarios the number of criteria and alternatives in 

each AHP framework was drawn uniformly from the 

interval {5, 6, 7, …, 15}. Thus, tables 1 and 2 present 

the results of average performances of chosen 

methods for either one thousand uniformly random 

AHP frameworks or five thousands cases of AHP 

frameworks (fifty uniformly random AHP 

frameworks, each perturbed one hundred times in 

accordance with the given scenario).  

 
 

Table 1. Performance evaluations of arbitrarily chosen five different methods for 1,000 AHP frameworks (nk, na {5, 15}) 

exclusively with the application of rounding errors. 
 

 

Method 

FRPCM APCM 

MAD SRCC PCC MAD SRCC PCC 

GM 0.00806526 0.972270 0.996995 0.00678213 0.978178 0.997865 
REV 0.00724835 0.972379 0.997704 0.00609367 0.978513 0.998381 

LUA 0.00736441 0.972510 0.997620 0.00617176 0.978416 0.998317 

SRDM 0.00735463 0.972399 0.997628 0.00616422 0.978304 0.998321 
SNCS 0.00788974 0.971815 0.997441 0.00658964 0.977771 0.998175 

 
Table 2. Performance evaluations of arbitrarily chosen five different methods for 5,000 cases of AHP frameworks (nk, na 

{5, 15}) exclusively with the application of perturbation factor drawn uniformly from the interval eij  [0.01, 1.99]. 
 

 

Method 

FRPCM APCM 

MAD SRCC PCC MAD SRCC PCC 

GM 0.0193661 0.773331 0.915057 0.01053150 0.865141 0.980755 

REV 0.0275356 0.659897 0.799391 0.00702442 0.917224 0.991594 
LUA 0.0248149 0.696302 0.844117 0.00713523 0.916219 0.991291 

SRDM 0.0265010 0.685005 0.831165 0.01217000 0.915188 0.991085 

SNCS 0.0215227 0.733349 0.895638 0.00803085 0.911193 0.989905 

 
 

Discussion with principal simulation outcomes 

 

Basing on performance evaluations of arbitrary 

chosen methods presented in tables 1&2 we can 

notice that from the perspective of technical 

realization of the comparison procedure (table 1) all 

chosen methods perform very similar in all 

scenarios, i.e. FRPCM and APCM. Obviously, 

judging their performance on SRCC as the indicator 

of ‘true’ ranks estimation ability, all of them perform 

slightly better in nonreciprocal cases. However, 

taking account of the methods’ performance when 

human judgments errors are introduced to the 

simulation’s scenario (table 2) we can observe the 

significant volatility of the outcome, which 

fluctuation is visible especially in conditions when 

forced reciprocity to PCMs is executed. Certainly, 

all methods again perform better (this time 

significantly) and their performance scores are more 

or less similar in the situation when nonreciprocal 

PCMs are accepted within the AHP. 
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To elaborate on this further we examine then the 

average performance results for 2,500 cases (50 

AHP frameworks, each perturbed 50 times) but this 

time only for arbitrary PCMs (APCMs) and with 

the application of different scales available 

(Saaty’s, geometric and numerical for n =50). The 

inconsistency will be imposed now due to rounding 

errors combined with perturbation factor (eij) drawn 

uniformly, log-normally, truncated normally or 

gamma from imposed different intervals. The 

number of alternatives and criteria for each 

framework also as previously will be drawn 

uniformly from different imposed intervals. The 

simulations results are presented in the consecutive 

Tables 3–6.  

 
 

Table 3. Performance evaluations of arbitrarily chosen five different methods for 2,500 cases of different uniformly drawn 

AHP frameworks with the application of both: perturbation factor drawn uniformly from the given interval and rounding 

errors connected with the assigned scale executed without forced reciprocity. 
 

 

Scenario details Average GM REV LUA SRDM SNCS 

S
aa

ty
’s

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0130458 0.0126586 0.0127309 0.0127362 0.0138414 

SRCC 0.957823 0.958874 0.958446 0.958514 0.957331 

PCC 0.997353 0.997439 0.997404 0.997397 0.997236 

 

nk,na{8,12} 

MAD 0.0057758 0.0052214 0.0052839 0.0052783 0.0055759 

SRCC 0.974015 0.973975 0.973820 0.973795 0.973532 

PCC 0.998227 0.998570 0.998526 0.998527 0.998505 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0274188 0.0235090 0.0239460 0.0242531 0.0272002 

SRCC 0.868120 0.892791 0.891103 0.890089 0.886706 

PCC 0.972679 0.981205 0.979872 0.979237 0.979101 

 

nk,na{8,12} 

MAD 0.0113223 0.0095430 0.0095948 0.0096054 0.0111978 

SRCC 0.896199 0.926508 0.925951 0.925639 0.919981 

PCC 0.977721 0.985330 0.985042 0.984970 0.982725 

G
eo

m
et

ri
c 

sc
al

e 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0111407 0.0104963 0.0106354 0.0106286 0.0119955 

SRCC 0.974489 0.975137 0.975023 0.974726 0.975043 

PCC 0.998478 0.998665 0.998631 0.998631 0.998434 

 

nk,na{8,12} 

MAD 0.0043648 0.0038646 0.0039199 0.0039159 0.0042695 

SRCC 0.976335 0.977594 0.977618 0.977607 0.976452 

PCC 0.998430 0.998728 0.998697 0.998699 0.998567 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0266659 0.0222967 0.0229416 0.0234542 0.0257579 

SRCC 0.863123 0.891477 0.890226 0.890037 0.887520 

PCC 0.978324 0.985570 0.984183 0.983383 0.983837 

 

nk,na{8,12} 

MAD 0.0090704 0.0071004 0.0071529 0.0071726 0.0085273 

SRCC 0.890638 0.923771 0.923058 0.922473 0.918694 

PCC 0.981531 0.989661 0.989484 0.989394 0.987821 

N
u

m
er

ic
al

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0071042 0.0069933 0.0071099 0.0071289 0.0070565 

SRCC 0.967414 0.967589 0.966834 0.966414 0.967731 

PCC 0.998296 0.998322 0.998271 0.998264 0.998310 

 

nk,na{8,12} 

MAD 0.0024932 0.0024018 0.0024392 0.0024409 0.0024663 

SRCC 0.979277 0.979581 0.979270 0.979218 0.979392 

PCC 0.999113 0.999154 0.999130 0.999128 0.999139 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0280545 0.0227402 0.0237604 0.0244559 0.0255492 

SRCC 0.878420 0.902011 0.898563 0.895694 0.896043 

PCC 0.977389 0.985240 0.983307 0.981900 0.982503 

 

nk,na{8,12} 

MAD 0.0085972 0.0063969 0.0065323 0.0065894 0.0071323 

SRCC 0.891820 0.925288 0.923506 0.922891 0.920081 

PCC 0.982247 0.990260 0.989799 0.989649 0.988908 

 
 

Table 4. Performance evaluations of arbitrarily chosen five different methods for 2,500 cases of different uniformly drawn 

AHP frameworks with the application of both: perturbation factor drawn log-normally from the given interval and rounding 

errors connected with the assigned scale executed without forced reciprocity 
 

Scenario details Average GM REV LUA SRDM SNCS 

S
aa

ty
’s

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5
] nk,na{3,7} MAD 0.0142571 0.0139780 0.0141020 0.0141339 0.0149231 

SRCC 0.966206 0.965297 0.965097 0.965134 0.965543 

PCC 0.993392 0.993622 0.993470 0.993439 0.993265 

nk,na{8,12} 
 

MAD 0.0072657 0.0067926 0.0068701 0.0068614 0.0073447 

SRCC 0.957104 0.957484 0.957012 0.956976 0.957140 

PCC 0.996865 0.997209 0.997137 0.997139 0.997083 

e i
j

[0
.0

5
,1

.9
5
] 

 

nk,na{3,7} 

MAD 0.0305822 0.0330802 0.0340382 0.0357697 0.0339215 

SRCC 0.862386 0.851629 0.845357 0.837306 0.860937 

PCC 0.969425 0.962036 0.958860 0.954328 0.967904 

 

nk,na{8,12} 

MAD 0.0114709 0.0127733 0.0128175 0.0129585 0.0134907 

SRCC 0.887247 0.870413 0.867313 0.864747 0.880653 

PCC 0.981927 0.976832 0.976042 0.974809 0.979869 

                                                                                   (Continued)  
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Table 4. Continued.  
 

G
eo

m
et

ri
c 

sc
al

e 

e i
j

[0
.7

5
,1

.2
5
] 

 

nk,na{3,7} 

MAD 0.0128633 0.0127354 0.0127982 0.0128182 0.0136260 

SRCC 0.962902 0.963300 0.962649 0.962597 0.963434 

PCC 0.997118 0.997062 0.997043 0.997023 0.996975 

 

nk,na{8,12} 

MAD 0.0052568 0.0047566 0.0048145 0.0048111 0.0053568 

SRCC 0.973069 0.972397 0.972507 0.972501 0.972262 

PCC 0.997709 0.997934 0.997917 0.997915 0.997779 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0290892 0.0313247 0.0328331 0.0351722 0.0310231 

SRCC 0.881520 0.868474 0.864397 0.852783 0.879223 

PCC 0.971459 0.964668 0.961850 0.955243 0.971532 

 

nk,na{8,12} 

MAD 0.0091140 0.0102803 0.0104189 0.0106102 0.0107429 

SRCC 0.892613 0.873998 0.870582 0.868336 0.885740 

PCC 0.984618 0.979775 0.979003 0.977936 0.982673 

N
u

m
er

ic
al

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0100140 0.0100800 0.0102147 0.0102610 0.0100918 

SRCC 0.966029 0.964814 0.964289 0.963960 0.965237 

PCC 0.996761 0.996739 0.996651 0.996627 0.996722 

 

nk,na{8,12} 

MAD 0.0033806 0.0033383 0.0033975 0.0034025 0.0034114 

SRCC 0.964389 0.963772 0.963189 0.963122 0.963729 

PCC 0.998224 0.998224 0.998165 0.998159 0.998248 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0297726 0.0325399 0.0341693 0.0365031 0.0301814 

SRCC 0.866574 0.854169 0.845574 0.833017 0.867431 

PCC 0.970203 0.961648 0.958120 0.952032 0.969562 

 

nk,na{8,12} 

MAD 0.0096297 0.0111019 0.0113577 0.0116762 0.0106907 

SRCC 0.876516 0.855135 0.851045 0.846685 0.871440 

PCC 0.983556 0.977749 0.976788 0.975329 0.981996 

 

 
Table 5. Performance evaluations of arbitrarily chosen five different methods for 2,500 cases of different uniformly drawn 

AHP frameworks with the application of both: perturbation factor drawn truncated-normally from the given interval and 

rounding errors connected with the assigned scale executed without forced reciprocity. 

 
Scenario details Average GM REV LUA SRDM SNCS 

S
aa

ty
’s

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0145333 0.0140003 0.0141235 0.0141195 0.0156128 

SRCC 0.960671 0.963691 0.963443 0.963414 0.958597 

PCC 0.997628 0.997906 0.997854 0.997858 0.997433 

 

nk,na{8,12} 

MAD 0.0059563 0.0053326 0.0053878 0.0053827 0.0057465 

SRCC 0.980945 0.981171 0.981071 0.981072 0.980543 

PCC 0.998031 0.998327 0.998293 0.998294 0.998187 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0181351 0.0172557 0.0173967 0.0174646 0.0191873 

SRCC 0.948574 0.952197 0.951343 0.950920 0.951034 

PCC 0.994288 0.995008 0.994811 0.994725 0.994664 

 

nk,na{8,12} 

MAD 0.0071966 0.0066036 0.0066401 0.0066366 0.0073019 

SRCC 0.939509 0.945351 0.944769 0.944689 0.943666 

PCC 0.995910 0.996758 0.996712 0.996705 0.996516 

G
eo

m
et

ri
c 

sc
al

e 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0086117 0.0081317 0.0081932 0.0081889 0.0091745 

SRCC 0.973211 0.972989 0.973063 0.972954 0.970631 

PCC 0.998195 0.998402 0.998373 0.998375 0.997933 

 

nk,na{8,12} 

MAD 0.0041155 0.0035110 0.0035652 0.0035615 0.0038870 

SRCC 0.983408 0.984299 0.984299 0.984276 0.983558 

PCC 0.999089 0.999355 0.999339 0.999340 0.999242 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0135980 0.0124764 0.0126109 0.0126553 0.0138182 

SRCC 0.954928 0.959803 0.959120 0.958817 0.958397 

PCC 0.993321 0.994541 0.994359 0.994291 0.994045 

 

nk,na{8,12} 

MAD 0.0058222 0.0050881 0.0051309 0.0051306 0.0057823 

SRCC 0.951047 0.958394 0.957960 0.957925 0.956669 

PCC 0.994974 0.996193 0.996143 0.996138 0.995726 

N
u

m
er

ic
al

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5
]  

nk,na{3,7} 

MAD 0.0063357 0.0060781 0.0061920 0.0062025 0.0063208 

SRCC 0.985169 0.983154 0.983663 0.983583 0.981983 

PCC 0.998710 0.998817 0.998783 0.998780 0.998747 

 

nk,na{8,12} 

MAD 0.0022199 0.0020856 0.0021232 0.0021229 0.0021720 

SRCC 0.983636 0.984306 0.984155 0.984151 0.983929 

PCC 0.999190 0.999261 0.999241 0.999240 0.999230 

e i
j

[0
.0

5
,1

.9
5
]  

nk,na{3,7} 

MAD 0.0140668 0.0128562 0.0131446 0.0132621 0.0133971 

SRCC 0.935714 0.942317 0.941031 0.940760 0.940303 

PCC 0.989812 0.991289 0.990926 0.990784 0.990937 

 

nk,na{8,12} 

MAD 0.0046522 0.0041408 0.0042081 0.0042182 0.0043255 

SRCC 0.948664 0.954517 0.953535 0.953312 0.953732 

PCC 0.995803 0.996697 0.996586 0.996570 0.996545 
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Table 6. Performance evaluations of arbitrarily chosen five different methods for 2,500 cases of different uniformly 

drawn AHP frameworks with the application of both: perturbation factor drawn gamma from the given interval and 

rounding errors connected with the assigned scale executed without forced reciprocity. 

 
Scenario details Average GM REV LUA SRDM SNCS 

S
aa

ty
’s

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5

]  

nk,na{3,7} 

MAD 0.0146236 0.0144099 0.0145395 0.0145660 0.0154600 

SRCC 0.954497 0.955880 0.955560 0.955480 0.953957 

PCC 0.994635 0.994807 0.994687 0.994657 0.994598 

 

nk,na{8,12} 

MAD 0.0062636 0.0058828 0.0059213 0.0059173 0.0063711 

SRCC 0.958675 0.959156 0.958923 0.958930 0.958267 

PCC 0.997164 0.997442 0.997397 0.997395 0.997332 

e i
j

[0
.0

5
,1

.9
5

]  

nk,na{3,7} 

MAD 0.0415948 0.0388801 0.0407574 0.0428978 0.0427987 

SRCC 0.836706 0.849291 0.840320 0.827494 0.851737 

PCC 0.944911 0.951084 0.943874 0.934234 0.954396 

 

nk,na{8,12} 

MAD 0.0144223 0.0135374 0.0136279 0.0137550 0.0151896 

SRCC 0.832827 0.851094 0.846411 0.843572 0.856371 

PCC 0.971288 0.975553 0.974462 0.973539 0.975290 

G
eo

m
et

ri
c 

sc
al

e 

e i
j

[0
.7

5
,1

.2
5

]  

nk,na{3,7} 

MAD 0.0129840 0.0128303 0.0129180 0.0129530 0.0136092 

SRCC 0.968149 0.968140 0.967506 0.967240 0.968066 

PCC 0.996598 0.996773 0.996738 0.996720 0.996596 

 

nk,na{8,12} 

MAD 0.0047593 0.0043302 0.0043737 0.0043717 0.0048051 

SRCC 0.970217 0.970243 0.970287 0.970248 0.969779 

PCC 0.997520 0.997777 0.997759 0.997757 0.997625 

e i
j

[0
.0

5
,1

.9
5

]  

nk,na{3,7} 

MAD 0.0376882 0.0346883 0.0367135 0.0385173 0.0367414 

SRCC 0.832483 0.843137 0.838009 0.828203 0.853026 

PCC 0.946212 0.955356 0.948289 0.942639 0.958049 

 

nk,na{8,12} 

MAD 0.0129163 0.0116866 0.0118396 0.0120637 0.0132075 

SRCC 0.848394 0.865567 0.862649 0.859490 0.871440 

PCC 0.963923 0.971706 0.970677 0.969011 0.971404 

N
u

m
er

ic
al

 s
ca

le
 

e i
j

[0
.7

5
,1

.2
5

]  

nk,na{3,7} 

MAD 0.0099081 0.0098137 0.0099730 0.0100189 0.0097824 

SRCC 0.954260 0.954866 0.954614 0.954414 0.956194 

PCC 0.995830 0.995876 0.995720 0.995684 0.995947 

 

nk,na{8,12} 

MAD 0.0034102 0.0033330 0.0033891 0.0033947 0.0034160 

SRCC 0.966000 0.965888 0.965327 0.965266 0.965969 

PCC 0.997939 0.998010 0.997952 0.997945 0.997971 

e i
j

[0
.0

5
,1

.9
5

]  

nk,na{3,7} 

MAD 0.0414851 0.0387284 0.0415120 0.0441710 0.0383818 

SRCC 0.826497 0.834877 0.824840 0.812126 0.850540 

PCC 0.936588 0.944530 0.934647 0.924594 0.952789 

 

nk,na{8,12} 

MAD 0.0121159 0.0106528 0.0109481 0.0117477 0.0113674 

SRCC 0.827889 0.854658 0.850964 0.846019 0.859897 

PCC 0.968161 0.975174 0.973771 0.971879 0.975017 

 

 

As we can notice all arbitrarily chosen methods 

perform very steady and similarly under all 

scenarios being studied. However, there exist also 

some discrepancies among their performance that 

should be disclosed here and discussed in more 

detail. First of all, as the rule of thumb, all methods 

arbitrarily chosen for the analysis perform better 

(judging on the SRCC) when geometric scale is 

applied as opposite to Saaty’s and numerical scales. 

Secondly, what was bolded in the tables no. 3–6, 

the REV (Saaty’s approach) is not a dominant 

method under all scenario being studied but is very 

often dominated at least by one of the method 

considered in the simulations (mostly by the GM, 

LUA and SNCS).  

The very important thing here is that, as 

opposite to the REV, the first two methods provide 

meaningful inconsistency measures of human 

judgments which operate with both reciprocal and 

nonreciprocal PCMs. Analyzing then the 

performance measures of these two methods (GM 

and LUA) we can realize that the latter’s 

performance is basically less vulnerable to change 

as the result of different scenarios applied during 

the research plan. 

 

Consistency Measurement and Inconsistency 

Level Acceptance 

 

Apart from deriving priority vectors, very crucial 

issue connected with the AHP  is how to measure 

the degree of inconsistency for the given PCM and 

in consequence for the entire AHP framework. 

Obviously, significant violations of the consistency 

can lead to vague results, not necessary reflecting 

the real priorities. This is why it is indispensable to 

control inconsistency of PCMs in order to be able 

to refine them during successive iterations of the 

weighting process. Certainly, the best way to 

control PCMs consistency is to measure their 

inconsistency. 
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However, as so far the only widely accepted 

procedure of PCM inconsistency measure belongs 

to Saaty and is closely related to the REV. 

Supposedly, that makes the latter particularly 

attractive although it works only with reciprocal 

PCMs. According to this concept (Saaty, 1980) the 

inconsistency of the data is measured as follows. 

First an inconsistency index INC(n) is computed as 

an average of difference between lambdamax and n 

for all eigenvalues except the principal one. Next, 

the value of the index is compared with an average 

random inconsistency index RINC(n) obtained 

from a sample of 500 randomly generated reciprocal 

PCMs of order n. Finally, it is proposed to use so-

called consistency ratio CR(n)=INC(n)/ RINC(n) for 

testing whether the information contained in the 

PCM is consistent enough to be acceptable. 

Unfortunately, this index is interpretable only for 

reciprocal PCMs and what was recently revealed 

(Grzybowski, 2012) it is improperly constructed. 

As was suggested in novel revelations of 

Grzybowski (2012) we should measure the 

inconsistency of our judgments by their comparison 

with random but either only transitive matrices or 

transitive and reciprocal as opposite to purely 

random reciprocal ones. Fortunately, the 

inconsistency measure proposed in this paper 

reflected by the formula [6] perfectly fits these ideas. 

As it has been already noticed the objective 

function minimum [5] itself constitutes the 

inconsistency measure. In the case when PCM is 

entirely consistent the value of the function is equal 

to zero. Only inconsistent PCMs lead to higher 

values. Of course, as the rule of the thumb we can 

assume, that closer the function is to zero, the 

better and more precise the outcome in the form of 

PV. But such an approach seems to be not precise 

enough. That is why we have proceeded with 

simulations in order to provide certain point of 

reference about the scale of inconsistency.  

We simulated randomly (uniform distribution) 

one thousand transitive and both reciprocal and 

transitive PCMs of different size from n=3 to 

n=10. For each PCM we calculated then a random 

consistency index (denoted as RCI(n)), i.e. square 

root of the LUA objective function minimum for a 

given PCM divided by n. During the simulations 

we strived to capture fundamental statistical 

characteristics of RCI(n) empirical distribution. 

Thus, we found its mean, maximum and minimum 

value, together with few fundamental quantiles of 

order p. These findings are presented in tables 7–8, 

where ARCI(n), denotes an average value of our 

random consistency index for transitive, and both 

transitive and reciprocal PCMs of given size, 

respectively. 

 

 
      Table 7. Statistical characteristics of RCI(n) uniform empirical distribution for 1000 random transitive PCMs. 
 

Empirical distribution 

characteristics 

Number of alternatives (n) 

3 4 5 6 

ARCI(n) 0.154126 0.120249 0.0919235 0.0768787 

MAX 0.508844 0.408991 0.3647490 0.3202210 

MIN 0 1.30328x10-8 0.0000820799 0.000259083 

Quantiles(p) 

p=0.50 

p=0.25 
p=0.10 

p=0.05 

p=0.01 

 

0.13709900 

0.06179450 
0.02333830 

0.01202070 

0.00188312 

 

0.10673200 

0.05021620 
0.02033520 

0.00998503 

0.00168073 

 

0.08146770 

0.04119980 
0.01520760 

0.00852620 

0.00141884 

 

0.067284200 

0.033547500 
0.013061900 

0.006296580 

0.001139629 

Empirical distribution 

characteristics 

Number of alternatives (n) 

7 8 9 10 

ARCI(n) 0.0649968 0.0560421 0.0529448 0.0454035 

MAX 0.2864140 0.2503580 0.2177790 0.2435240 

MIN 0.000154599 0.000194726 0.0000456564 0.0000293881 

Quantiles(p) 

p=0.50 

p=0.25 
p=0.10 

p=0.05 

p=0.01 

 

0.05723690 

0.02816140 
0.01099060 

0.00623333 

0.00111583 

 

0.046621300 

0.022476900 
0.008868580 

0.004343320 

0.000530469 

 

0.046588000 

0.022511700 
0.008853040 

0.004128230 

0.000687716 

 

0.038270800 

0.018412800 
0.007443720 

0.003554770 

0.000508242 

 
 

Following the standard AHP approach to 

inconsistency proposed by Saaty we could proceed 

similarly. Taking into account ARCI(n) we have 

the index which reflects the average inconsistency 

for random PCMs of the certain size and type 

(either transitive or both transitive and reciprocal). 

In this way, we may establish the point of 

reference. Taking the quotient of CI(n) for regarded 

PCM with DM judgments and ARCI(n) we obtain 

the ratio of consistency, denoted as RC(n). It can be 

provided in the form of the following formula: 
 

  %100)()()(  nARCInCInRC       [10] 
 

However, presented approach fits only the 

situations when purely transitive PCMs are 

considered as the point of reference although in our 

opinion it is still statistically vague. But, in the 
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situations when we would need the point of 

reference for transitive and reciprocal PCMs, it 

seems totally irrational. Let us assume that for 

example we accept only such transitive and 

reciprocal PCMs with DM judgments for which 

RC(n)<10% (Saaty’s suggestion). As we may 

notice from table 8, for n>5 the minimum value of 

RCI(n) is higher than 0.1 x ARCI(n) what means 

that all purely random transitive and reciprocal 

PCMs have higher inconsistency measures than the 

point of reference. Other words the acceptance 

threshold is set too low in these cases because even 

if the DM judgments represented by his or her 

PCM would have higher RC(n) values than 10% it 

is still okay, for example for n=9, even RC(n)=16% 

still guarantees that this particular PCM is very 

consistent. 

 

 
Table 8. Statistical characteristics of RCI(n) uniform empirical distribution for 1000 random transitive and reciprocal PCMs. 
 

Empirical distribution 

characteristics 

Number of alternatives (n) 

3 4 5 6 

ARCI(n) 0.0261667 0.029777 0.030853 0.0294431 

MAX 0.0989477 0.136671 0.118688 0.1123730 

MIN 0 1.01876x10
-8 

0.00147941 0.00342439 

Quantiles(p) 

p=0.50 

p=0.25 

p=0.10 

p=0.05 

p=0.01 

 

0.02039090 

0.00556640 

0.00106425 

0.00029661 

6.17051x10
-9 

 

0.02406540 

0.01131720 

0.00569450 

0.00388420 

0.00129368 

 

0.02564450 

0.01430590 

0.00825254 

0.00610716 

0.00402920 

 

0.02494560 

0.01450020 

0.00873334 

0.00672822 

0.00409556 

Empirical distribution 

characteristics 

Number of alternatives (n) 

7 8 9 10 

ARCI(n) 0.0265863 0.0254875 0.0244738 0.0229575 

MAX 0.10082 0.111298 0.0912381 0.0833758 

MIN 0.00287502 0.0039654 0.00396829 0.00359805 

Quantiles(p) 

p=0.50 

p=0.25 

p=0.10 

p=0.05 

p=0.01 

 

0.02235100 

0.01347480 

0.00841233 

0.00690568 

0.00444787 

 

0.02052160 

0.01282920 

0.00849714 

0.00672296 

0.00535900 

 

0.02118710 

0.01260140 

0.00867249 

0.00715629 

0.00557264 

 

0.01952190 

0.01185330 

0.00818474 

0.00692282 

0.00516794 

 
 

That is why we propose here different approach for 

inconsistency measurement. Our approach 

fundamentally resembles standard statistical 

methodology. If we decide to apply only reciprocal 

PCMs within the AHP process, in order to evaluate 

consistency of the particular PCM we have to 

compare its CI(n) with adequate quantile of order p 

and given n for transitive and reciprocal PCMs 

distribution. When we accept the opinion that only 

nonreciprocal PCMs provide better estimations of 

‘true’ DM priorities, in the same way better accuracy 

of DMs judgments, in order to evaluate consistency 

of the particular PCM we have to compare its CI(n) 

with respective quantile of order p and given n for 

purely transitive PCMs distribution. 

Anyway, we have the information then how 

much the particular judgment comprises the element 

of chance variation. Generally, closer the value of 

CI(n) is to zero, better the approximation becomes of 

‘true’ PV under the assigned level of significance 

(given by the accepted order of quantile). We accept 

DM judgments then and only then when 

CI(n)<Quantile(p). Otherwise, we reject the 

judgments. As suggested in Grzybowski (2012), it is 

crucial to compare CI(n) for a given PCM with DM 

judgments to quantiles of RCI(n) empirical 

distribution for random transitive or both transitive 

and reciprocal PCMs, because only then we have the 

information about DMs judgment consistency from 

the perspective of their prioritization accuracy as 

opposed to the information about their priorities 

order (the case when we compare CI(n) for a given 

PCM with DM judgments to quantiles of RCI(n) 

empirical distribution for random not transitive but 

purely reciprocal PCMs). 

 

Conclusions 

 

Deriving true priority vectors from intuitive 

pairwise comparison matrices (PCMs) and 

consistency measurement of decision makers 

judgments about their genuine weights are a crucial 

issue within the multicriteria decision making 

support methodology called the Analytic Hierarchy 

Process (AHP). The most popular procedure in the 

ranking process, commonly applied in the AHP, 

constitutes the Right Eigenvector Method (REV) 

conceived together with the AHP methodology by 

Thomas Saaty. This procedure however, has 

serious drawbacks and flaws which from a very 

long time constitute the main theme of its 

opponent’s critique. Still, as long as inconsistent 
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PCMs are allowed in the AHP, although other 

procedures exist, the inventor of the AHP convinces 

that none of them qualifies and the REV provides 

the only right solution in this process. In this 

scientific quest we examined some fundamental 

issues within this field thanks to computer 

simulations for the entire AHP framework (as 

opposed to a single PCM simulation research). Our 

findings verify the statement that the REV cannot 

longer be perceived as the dominant procedure 

within the AHP especially when nonreciprocal 

PCMs are considered. It is so mainly because it 

impoverishes the AHP methodology by its lack of 

PCMs consistency measure in such cases, which is 

an indispensable element of the entire AHP 

concept. Thus, especially in multicriteria decision 

making problems embedded in management 

processes we advise the application (together with 

the AHP) of other available methods like for 

example presented in this research which perform 

quite steady, more accurately, contrary to the REV 

they allow to introduce additional constraints that 

enable order preservation of weights and most of all 

provide valid and meaningful inconsistency measure 

for both reciprocal and nonreciprocal PCMs. The fact 

especially important because the simulation 

performance results of different methods presented in 

this research indicate unequivocally that the enforced 

reciprocity of PCM leads directly to worse estimates 

of priorities weights. Thus, the crucial implication 

of this study for the entire AHP methodology is 

such, that if we care for betterment of its 

prospective applicative results, the performance of 

the AHP can and should be improved by the 

application of presented here novel scientific 

findings.  
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